skip to main content


Search for: All records

Creators/Authors contains: "Chaudhri, Nivedita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. The title chlorin, 2 Ph H 2 , hydrogen-bonded to dimethylaminopyridine (DMAP), C 44 H 32 N 4 O 2 ·C 7 H 10 N 2 , and its corresponding zinc(II) complex, 2 Ph Zn , axially coordinated to ethylenediamine (EDA), [Zn(C 44 H 30 N 4 O 2 )]·C 2 H 8 N 2 , were isolated and crystallized by adventitious reduction of the corresponding osmate esters by DMAP and EDA, respectively. Known since 1996 and, inter alia , used for the preparation of a wide range of (planar and non-planar) chlorin analogues (so-called pyrrole-modified porphyrins), their conformational analyses in the solid state are important benchmarks. Both macrocycles are only modestly distorted from planarity and both are slightly more non-planar than the corresponding dimethoxy-derivative, but less planar than a free-base meso -pentafluorophenyl-based osmate ester. NSD analyses provide quantitative and qualitative analyses of the distortion modes. One origin of the non-planarity is presumably the avoidance of the eclipsed configuration of the two vic–cis diols on the pyrroline moiety; the resulting deformation of the pyrroline translates in some cases into the macrocycle. The structure of 2 Ph H 2 features voids making up ca 26% of the unit-cell volume filled with highly disordered solvate molecules (chloroform and hexanes). 2 Ph Zn crystallized with a 13.6 (4)% occupied solvate methanol molecule. 
    more » « less
  3. Octaethyltrioxopyrrocorphins unexpectedly show macrocycle-aromatic properties, even though they contain the macrocyclic π-system of the non-aromatic pyrrocorphins (hexahydroporphyrins). Two of the four possible triketone regioisomers were first reported in 1969 by one-pot oxidation of octaethylporphyrin but remained essentially unexplored since. We detail here the targeted preparation of the remaining two triketone isomers and the optical and NMR spectroscopic properties of all isomers. All four regioisomers possess unique electronic properties, including broadly varying degrees of diatropicity that were experimentally determined using 1 H NMR spectroscopy and computationally verified. Structural patterns modulating the aromaticity were recognized. These differences highlight the regioisomerically differentiated influences of the three β-oxo-functionalities. We also present the solid state structure of the two most common isomers (in their free base form or as zinc complexes), allowing further conclusions to be made about the resonance structures present in these triketones. Remarkably, also, the halochromic properties of the triketones differ sharply from those of regular (hydro)porphyrins, providing further support for the proposed 16-membered, 18 π-electron aromatic ring-current. The work conceptually expands the understanding of tris-modified hydroporphyrinoid analogues and the factors that enable and control porphyrinoid aromaticity. 
    more » « less
  4. null (Ed.)
    Inspired by the architecture of the macrocycle of heme d 1 , a series of synthetic mono-, di- and tri-β-oxo-substituted porphyrinoid cobalt( ii ) complexes were evaluated as electrocatalytic CO 2 reducers, identifying complexes of unusually high efficiencies in generating multi-electron reduction products, including CH 4 . 
    more » « less
  5. null (Ed.)
    Cobalt porphyrinoids find broad use as catalysts or electrode materials. Traditional solution state cobalt insertion reactions into a free base porphyrinoid to generate the corresponding cobalt complex generally require fairly harsh conditions, involving the heating of the reactants in high-boiling solvents for extended period of times. We report here an alternative method of cobalt insertion: A solvent-free (at least for the insertion step) mechanochemical method using a planetary ball mill with Co 2 (CO) 8 as a cobalt source. The scope and limits of the reaction were investigated with respect to the porphyrinic substrate susceptible to the reaction conditions, the influences of different grinding aids, and bases added. While the mechanochemical method is, like other metal insertion methods into porphyrinoids, not universally suitable for all substrates tested, it is faster, milder, and greener for several others, when compared to established solution-based methods. 
    more » « less